
a,

F
a
o
p
A

w

T
t

Journal of Magnetic Resonance145,1–7 (2000)
doi:10.1006/jmre.2000.2019, available online at http://www.idealibrary.com on
Tunneling Spectroscopy from Magnetization Evolution
in a Tilted Rotating Frame of Nuclear Spins

A. Damyanovich,* J. Peternelj,† and M. M. Pintar‡

*Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada;†Faculty of Civil and Geodetic Engineering, University of Ljubljan
and Institute J. Stefan, Ljubljana, Slovenia; and‡Department of Physics, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1

Received December 1, 1998; revised December 22, 1999
h a
ow
ntia
ted
ed
s in

uc
ote
p,

etr

n
al

a
g ublet
o y
d st
e -

of

onic
the
tions

nse-
state
t

cy
rate
of

f
o the
, in
oups

d to
tion
ins.
thyl
l DC
d

The time evolution of the proton Zeeman magnetization in the
rotating frame at the magic angle UM 5 cos21(1/=3) is calculated
for an isolated tunneling methyl group and its Fourier transform
is given. The calculation compares well with the experimental
spectra of CH3CD2I and methylmalonic acid. It is shown that

ourier transform spectroscopy of the magnetization evolution in
tilted RF frame represents an excellent alternative to the anal-

gous experiment performed at exact resonance, resulting in im-
roved resolution and a much better signal-to-noise ratio. © 2000

cademic Press

INTRODUCTION

The rotational motion of symmetric atomic groups suc
CH3 or NH4 is usually hindered in molecular crystals. At l
temperatures and in the presence of strong hindering pote
the rotational wave functions may be adequately represen
linear superpositions of harmonic oscillator states center
the minima of the hindering potential. For methyl group
particular, the eigenfunctions of the rotational HamiltonianHR,

HR 5 2
\ 2

2I

d2

dg 2 1 V3~g!, [1]

are constructed in such a manner as to represent the irred
representations of the symmetry group of the hindering p
tial V3(g). (I is the moment of inertia of the methyl grou

hile g is the angle describing its rotation about its symm
axis.) If the potential has a threefold symmetry,V3(g) 5
(1

2)V0(1 2 cos 3g), the symmetry group is C3 (1), and the
eigenfunctionsc n

(n)(g) of HR are given as

c n
~n!~g! 5

1

Î3
O

j

e sjH ~n!~g 2 j2p/3!, j 5 0, 61. [2]

he H (n)(g 2 j2p/3) are harmonic oscillator functions ce-
ered at the minima ofV3(g); n 5 0, 1, 2, . . . , is the torsion
or librational quantum number,e 5 ei2p/3, with n [ A, Ea, Eb

denoting the irreducible representations of the C3 symmetry
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group, corresponding tos 5 0, 1, and21, respectively. For
ivenn the rotational energy levels form a degenerate do
f E symmetry and a singlet ofA symmetry. The energ
ifference between the ground state ofA symmetry and the fir
xcited doubly degenerate state ofE symmetry (which van

ishes in the limitV0 3 `) is called the tunneling splitting
the ground state manifold, denoted by\vT. Thus,

\vT ; E0R
~E! 2 E0R

~ A!

5 ^c 0
~Ea!uHRuc 0

~Ea!& 2 ^c 0
~ A!uHRuc 0

~ A!&

5 23^H ~0!~g!uHRuH ~0!~g 2 2p/3!&. [3]

To obtain this result the small overlap between harm
oscillator functions centered at neighboring minima of
potential has been neglected; in other words the eigenfunc
[2] are considered normalized in this approximation. Co
quently, using Eq. [1] and the expression for the ground
harmonic oscillator functionH (0)(g) (as given in most tex-
books on quantum mechanics), it follows that

vT >
3

2
vce

2~p 2/9!~Ivc/\!S Ivc

\ DSp 2

9
2

4

9D , [4]

where,v c 5 (9V0/ 2I)1/2 is the classical librational frequen
around the minima of the hindering potential. A more accu
expression forvT based on WKB pocket states (instead
harmonic oscillator states) is given in Ref. (2), while its tem-
perature dependence is discussed in Ref. (3). The magnitude o
the tunneling frequency is of interest because it relates t
strength and symmetry of the hindering potential which
turn, reflects interactions between neighboring atomic gr
(4).

In what follows we will describe a spectroscopic metho
measure the tunneling frequency by monitoring the evolu
of the magnetization in a tilted rotating frame of nuclear sp
With this aim, let us consider an ensemble of isolated me
groups embedded in a crystal lattice, subject to an externa
magnetic fieldHW 0 along they-axis of the laboratory fixe
1090-7807/00 $35.00
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2 DAMYANOVICH, PETERNELJ, AND PINTAR
coordinate frame. We propose an investigation of the
evolution of the proton magnetization under the influenc
RF pulses (of short duration compared to the spin–la
relaxation time) while the spins are in thermal equilibrium w
the lattice. The RF pulse sequence for the measurement
Zeeman magnetization in the rotating frame at exact reson
Mx(t), is as follows: The firstp/2 pulse rotates the equilibriu
magnetizationMW 0 through 90° into the plane perpendicula
HW 0, where its phase defines the orientation of the trans
axes in the frame of reference rotating about the directio
HW 0. (By convention thep/2-pulse RF field is directed along t
y-axis). The subsequent RF field pulse of durationt is phase
shifted by 90° with respect to the first pulse and there
oriented along thex-axis of the rotating frame.

Except for the fact that in a tilted rotating frame the
quency of the RF field pulsev differs from the proton Zeema
frequency v0, the situation is analogous to standard s
locking. Also, instead of a 90° pulse, au° pulse with a tipping
angleu 5 tan21(v1/(v0 2 v)) must be used. The frequency
the u° pulse is equal tov0 with v 1 5 g pH 1 whereH 1 is the

agnitude of the field pulse.
When the system under consideration is described

ensity matrix instead of a wavefunction, then the expect
alue of any operator is calculated as the trace of a produ
he operator and the density matrix defined with respect
hosen coordinate system. The density matrixs for spins

evolving in a tilted rotating frame is given by the equation
motion

i\
­s

­t
5 @H, s#, [5]

whereH is the corresponding Hamiltonian (see below). Eq
tion [5] is further bounded by the initial conditions (t 5 0) 5
s(0), where the timet 5 0 refers to the instant when the
field pulse is switched on. It has been common practic
assume the existence of spin temperature in the rotating
in which cases(0) can be written as

s~0! } e2bZHZ2bL~HR1H D
00~u !!, [6]

hereb 5 1/kT, and the spin or Zeeman temperatureTZ in the
rotating frame equals the lattice temperature timesH 1/H 0. k is
the Boltzmann constant, whileHD

00(u) is the secular part of th
dipolar interaction in the rotating frame (see below). In
present calculation we will not use the initial condition [6],
shall only assume that prior to the application of theu° pulse
the Zeeman-rotational system is in thermal equilibrium
the lattice. Since in many experiments the magnitudeH91 of the
u° pulse is comparable toH 1, it is clear that the evolution of th
e
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spin system during theu° pulse could be significant and sho
be taken into account. No such evolution was considere
deriving [6], therefore this condition must be modified in
present calculation.

The expression for the proton magnetizationMx(t) along the
x-axis of the laboratory frame always refers to the end o
field pulse. In actual experiments, however, the monitored
window, or “point” on the FID, is delayed by an additio
time t after the end of the field pulse. Thus, in order
consistently compare experimental results with calcu
ones, the evolution of the Zeeman-rotational system in the
interval t—during which the spins evolve in the laborat
frame—should also be considered.

The experimental data on CH3CD2I and methylmalonic aci
corroborate the theoretical results conclusively.

THE HAMILTONIAN OF THE SYSTEM AND THE
EQUATION OF MOTION FOR THE DENSITY MATRIX

IN THE TILTED ROTATING FRAME

The Hamiltonian describing the dynamics of an isola
methyl group (on a time scale short compared to the s
lattice relaxation time) is

H 5 HZ 1 HR 1 HD 1 HRF~t!, [7]

here the Zeeman Hamiltonian is

HZ 5 2\v0I Z. [8]

I Z is the z-component of the total spin of the methyl gro
protons, andv 0 [ g pH 0 is their Larmor frequency.HR is the
rotational Hamiltonian [1]. In what follows, we shall assu
that the strength of the threefold hindering potentialV3(g) is
sufficiently large to limit the tunneling frequencyvT of the
methyl group to the range of the dipolar frequencyvD 5
g p

2\/R0
3. Assuming the proton magnetogyric factor isgp 5

2.675 3 104 s21 G21 and the proton–proton distanceR0 '
1.78 A, weobtainvD ' 134 kHz orvD/gp ' 5 G.

The dipole–dipole interaction, written in a form similar
(5), is

HD 5 \vD O
k522

2

~21! k O
i,j

U ij
2kV ij

k . [9]

The operatorsUij
2k are

U ij
2k 5 ~6p/5! 1/ 2Y2

2k~u ij , f ij!. [10]
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3TUNNELING SPECTROSCOPY IN A TILTED ROTATING FRAME
where the spherical harmonicsY2 (u ij , f ij ) (polar angles (u ij ,
f ij ) associated with the proton–proton vectorRW ij ), are define
in (5). The spin operatorsVij

k are

Vij
0 5 2~8/3! 1/ 2F I i

0I j
0 2

1

4
~I i

1I j
2 1 I i

2I j
1!G , [11a]

Vij
61 5 6~I i

0I j
61 1 I i

61I j
0!, [11b]

Vij
62 5 2I i

61I j
61, [11c]

and we have introducedI i
0 [ I iz and I i

61 5 I ix 6 I iy.
The radiofrequency field applied to the sample is a rota

transverse magnetic field. The corresponding interaction H
iltonian is

HRF~t! 5 2\v1~I xcosvt 2 I ysin vt!, [12]

herev 1 [ g pH 1 andI x [ I x1 1 I x2 1 I x3 (similarly for I y).
The equation of motion for the density matrix in the rota

frame (assuming the frequency of the RF fieldv @ v1) is (6),

i\
­r r

­t
5 @2\~v0 2 v!I z 2 \v1I x

1 \vD O
i,j

U ij
0Vij

0 1 HR, rr#. [13]

t is related to the density matrixr in the laboratory frame b
a unitary transformation

r 5 eivtI zr re
2ivtI z. [14]

Theu° tilted rotating frame is introduced through the tra
formation (6)

s 5 eiuI yr re
2iuI y, [15]

whereupon the resulting equation of motion fors becomes

i\
­s

­t
5 @H0 1 V, s#, [16]

here

H0 5 2\veI z 1 HR 1 H D
00~u !, [17]

H D
00~u ! 5 d00~u !\vD O

i,j

U ij
0Vij

0, [18]

and

V 5 O
kÞ0

d0k~u !S \vD O
i,j

U ij
0Vij

kD ; O
kÞ0

d0k~u !Vk. [19]
g
m-

-

The coefficientsd0k(u ) are (5),

d00~u ! 5 ~3 cos2u 2 1!/ 2, [20a]

d061~u ! 5 6~3/ 2! 1/ 2sin u cosu, [20b]

d062~u ! 5 ~3/8! 1/ 2sin2u. [20c]

The effective Zeeman frequency in the tilted rotating frameve,
introduced in [17], is

ve 5 @~v0 2 v! 2 1 v 1
2# 1/ 2. [21]

Time Evolution of the Zeeman Polarization in the Tilted
Rotating Frame

Equation [16] is formally the same as discussed previo
in (7) and consequently the same method of solution app
Using the interaction representation defined by

s I~t! 5 e~i /\! H0ts~t!e2~i /\! H0t, [22]

one can easily write down the solution for the interac
picture density matrixs I(t) in a form of perturbation series. U
to the second order in the nonsecular part of the dip
interactionV, the result is

s I~t! 5 s I~0! 1 S2
i

\D E
0

t

dt1@V~t1!, s I~0!#

1 S2
i

\D
2 E

0

t

dt1 E
0

t1

dt2@V~t1!,

@V~t2!, s I~0!## 1 · · ·, [23

where

V~t! 5 e~i /\! H0tVe2~i /\! H0t, [24]

and, of course,s I(0) [ s(0).
The initial density matrixs(0) describes the state of the sys

in the tilted rotating frame immediately after theu° pulse has bee
switched off. As already suggested in the Introduction (and
viously discussed in (7)), the evolution of the spin system dur
theu° pulse should be considered whenever the magnitude o
pulse,H91, is comparable to the magnitudeH1 of the spin-locking
field pulse. This modifies the expression for the initial den
matrix s(0) with respect to its usual high-temperature form,
Using the high-temperature approximation (with theu° pulse
along the negativey-axis) and keeping only terms to first orde
the dipolar interactions, we obtain

s~0! 5 s0~0! 1
ibL\v0

Z

1

\v91 E
0

u

du9e2ihR~u2u9!

3 O
k

kd0k~u9!VkeihR~u2u9! 1 · · ·, [25
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4 DAMYANOVICH, PETERNELJ, AND PINTAR
wheres 0(0) > (1 1 b L\v 0I z 1 . . .)/Z is the high-tempe
ature approximation of [6],Z is the partition sum,hR [

R/\v91, and v91 5 g pH91. The second term of [25] thu
represents the change in the initial condition for the de
matrix, which is due to spin dephasing during theu° pulse.

In accordance with what has been said in the Introduc
the Zeeman polarization along thex-axis of the laborator
frame (thex-component of the magnetization) is

Mx~t! 5 gp\Tr~r~t!I x!. [26]

Using [14] and the inverses of [15] and [22], we can rew
[26] as

Mx~t! 5 sin u z gp\Tr$s I~t!I z%cosvt

1 cosu z gp\Tr$s I~t!e
~i /\! H0tI xe

2~i /\! H0t%cosvt

1 gp\Tr$s I~t!e
~i /\! H0tI ye

2~i /\! H0t%sin vt. [27]

The calculation of the traces in (27) is performed
in the basis defined by the eigenstates ofH 0 (17), which
in turn are expressed in terms of the symmetry ada
eigenstates of2\v eI z 1 H R (given explicitly in (7) to-
gether with the diagonalization ofH 0). The calculation
is particularly simple—although lengthy—in the mag
angle tilted rotating frame corresponding tou 5 uM 5
os21(1/=3) > 0.3p. In this caseH D

00(uM) [ 0 (since
00(u M) 5 0), yielding

Mx~t! 5 ~Î6/3! M0cosvt 2
1

4 SvD

ve
D 2

~1 2 3 cos2b! 2

3 H2Î2 sin vet 2 S ve

v91
Dcosvet

2 Î2 sin 2vet 1 S ve

v91
Dcos 2vetJsin vt

1
Î3

16 SvD

ve
D 2

~1 2 3 cos2b! 2

3 H2
3Î2

2
1 S ve

v91
Dsin vet 1

11Î2

3
cosvet

1 S ve

v91
DS0.9p Î2

4
2

11

6 D
3 sin 2vet 1

11Î2

6
cos 2vetJ

3 cosvt 1 O
n51,2

O
l561

An,l
~s! ~b!@cos~nve 1 lD!t

2 cosvet#sin vt 1 O
n51,2

O
l561

Bn,l
~s! ~b!
ty

n,

e

d

3 @~21! nsin~nve 1 lD!t 2 sin vet#sin vt

1 O
l561

al
~s!~b!FS3ve 1 lD

ve
Dsin vet

2 sin~ve 1 lD!t 1 2 sin~2ve 1 lD!tG
3 sin vt 1 O

n51,2

O
l561

An,l
~c! ~b!@cos~nve 1 lD!t

2 cosvet#cosvt 1 O
n51,2

O
l561

Bn,l
~c! ~b!

3 @~21! nsin~nve 1 lD!t 2 sin vet#cosvt

1 O
n51,2

O
l561

D n,l
~c! ~b!@1 2 cos~nve 1 lD!t#cosvt

1 O
n51,2

O
l561

F n,l
~c! ~b!sin~nve 1 lD!t cosvt

1 O
l561

al
~c!~b!FlD

ve
2 S3ve 1 lD

ve
D

3 cosvet 2 cos~ve 1 lD!t

2 2 cos~2ve 1 lD!tGcosvt. [28]

0 5 g p\Tr{ s 0(0)I Z}; the symbol\D is theA–E tunneling
splitting; ve 5 v1=(3

2); b denotes the angle between
external magnetic fieldHW 0 and the symmetry axis of the meth
group; and the coefficientsA to F and a are given in th
Appendix. Due to the vanishing of the secular part of
dipolar interactionHD

00 [18, 20a] in the magic-angle frame, t
frequencies corresponding to the transitions among the e
states ofH 0 induced by the nonsecular terms [19] ([H 0, V] Þ
0) are not shifted by the dipolar interaction (as can be
from [28]). The intensities of these transitions, on the o
hand, do depend on the strength of the nonsecular part
dipolar interaction in the tilted rotating frame [19, 20b, 20c
shown in the Appendix.

DISCUSSION OF THE RESULTS

To represent the results in a graphical form, it is conven
to define the Fourier transform ofMx(t) as

mx~ṽ, cosb! 5
1

Î2p E
2`

`

dtMx~t!e
i ṽt, [29]

and the corresponding expression for a polycrystalline
ple is
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5TUNNELING SPECTROSCOPY IN A TILTED ROTATING FRAME
^mx~ṽ!& 5
1

2 E
21

1

d cosbmx~ṽ, cosb!. [30]

sing [28], [29], and [30] and the results given in the App
ix, it is not difficult to obtain the explicit results for^mx(V)&

(V [ ṽ 2 v). Broadening the result with a Gaussian func
according to

^mx~V; s!& 5 E
2`

`

du^mx~u!&e2~V2u! 2/ 2s 2
/Î2ps 2, [31]

e obtain the spectra shown in Fig. 1, representing the abs
alue of the real part of the Fourier transform of [28]. (T
maginary component is not shown since in the magic-a
ase it is qualitatively the same as the real part of the Fo
ransform.)

It is well known (8) that the Fourier transform of the Zeem
olarization in the rotating frame at exact resonance s
onvanishing intensity only in the vicinity of 2H 1 (we are

nterested only in the Fourier components peaked atH 1 and
2H 1 and neglect the Fourier component atV 5 0, which,

lthough always present, is distorted due to experimenta
tations). This is due to the fact that at exact resonanceu 5
p/ 2, d061(p/ 2) 5 0, andV, as defined by [19], contains on
he V62 terms of the dipolar interaction. This result, toge
ith the assumption thats(0) in the rotating frame has t

canonical forms~0! } e2bZHZ2bL~HR1H D
00~p/ 2!! is sufficient to

show that the Fourier transform of the magnetization in
rotating frame has a nonvanishing intensity only near m

FIG. 1. The absolute value of the real part of the Fourier transform o
expression [28] corresponding to the magic-angle case. HereH e 5 40 G; the
trength of theuM-pulseH91 5 50 G;vD/gp 5 5 G, and the tunneling splittin
/gp is 0, 5, 15, and 30 G; the broadening parameters is 1 G. The curves a

plotted as functions ofV/gp (the imaginary part of the Fourier transform
ualitatively similar).
-

ute

le
er

s
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tiples of 2H 1 (apart, of course, from the tunneling sid-
bands). However, when the evolution of the Zeeman-r
tional system during the 90 oru° pulse is allowed for, the
the Fourier transform acquires intensity at multiples ofH 1

as well, with intensity proportional tob ZuH Zuz\v D/\v91.
This structure disappears in the limitH91 3 ` and is in fac
barely visible whenH91 is $60 G.

The situation is somewhat different when the experim
are performed off-resonance at the magic angleuM 5 cos21(1/
=3). In this case, as was already pointed out,d00(uM) 5 0, and
consequentlyHD

00(uM) 5 0; however,d0k(uM) Þ 0 for k Þ 0,
nd the real part of the Fourier transform of thex-componen
f the magnetization as given by [28] will have nonvanish

ntensity both atH 1 and 2H 1, even in the limit of a very stron
u°M pulse. The imaginary component of the Fourier transf
due to the evolution of the Zeeman-rotational system du
the u°M pulse, vanishes in this limit.

It holds true that the real component of the Fourier trans
does not depend significantly on the strength of theu°M pulse for
the D-values used. Simulations forH e 5 =(3

2)H 1 5 40 G,
91 5 50 G,s 5 1 G, andD/gp 5 0, 5, 15, and 30 G are show

in Fig. 1. The curves are plotted as a function of the off-fi
parameterh [ V/g p, with intensity given in arbitrary unit
Only the real part of the Fourier transform is shown since
imaginary component is, at least for the parameters ch
quantitatively the same.

COMPARISON WITH EXPERIMENTS

As has already been pointed out, at exact resonanceu 5
p/2), the real component of the Fourier transform^mx(V; s)&
shows a nonvanishing intensity only in the neighborhoo
2H 1. Specifically, atD 5 0 there is a single peak centered
2H 1 of width of 3.8 G at half intensity. As the tunneli
splitting \D increases, a double peak structure appea
relatively small values ofD. The peak-to-peak separation of
resulting tunneling satellite is further shifted by the dip
interaction away from the expected value of 2D, with the
magnitude of the shift dependent on the ratiovD/D.

At magic angleHD
00(uM) 5 0 and consequently the tunnel

satellites are not shifted by the dipolar interaction. It turns
that the agreement between the calculated and measured
tra is much better atu 5 uM than at exact resonance. We
see that the spectrum of CH3CD2I, Fig. 2a(9), taken at 40 K
andu 5 uM, compares well with the calculated results atuM,
H91 5 25 G,H e 5 20 G, andD/gp 5 4.4 G. The same is tru
in the case of methylmalonic acid, Fig. 3, withD/gp 5 17.6 G
A comparison of the on-resonance spectrum with its ma
angle counterpart (Figs. 3a and 3b, respectively) illustrate
improved spectral resolution obtainable with tilted rota
frame spectroscopy.

To conclude we would like to emphasize that the mag
zation as given by [27] or [28] is evaluated immediately a

e
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6 DAMYANOVICH, PETERNELJ, AND PINTAR
the end of the field pulseH 1. However, the measurement of
FID is always delayed for a timet (>10 ms) after the end o
he field pulse. For this reason we should also have taken
ccount the evolution of the magnetization in the labora

rame under the action of2\v 0I Z 1 HR 1 HD
00 (using the

secular part of the dipolar interaction as defined in the lab
tory frame). A calculation entirely analogous to the one
scribed above shows that the real and imaginary compone
the Fourier transform of̂I x(t 1 t)& become mixtures of th
real and imaginary parts as defined on the basis of [27].
corresponding weight factors are rapidly oscillating funct
of the time delayt. Consequently, when comparing the ca
ated spectra [28] with experimental results, this fact shou
ept in mind. Moreover thet-evolution causes the appeara

of a line centered at the off-field value corresponding to
tunneling frequency, with intensity comparable to that of

FIG. 2. The experimental spectrum of the proton magnetization evol
of CH3CD2I in the tilted rotating frame, at 40 K. (a)H e 5 20 G andu 5 65.9°;
(b) H e 5 20 G andu 5 uM. Comparing this spectrum with that of Fig. 1 giv
D/gp 5 4.5 6 0.3 G. Note the “nonmagnetic” peak at 01 D/gp ' 4.5 G. The
DM 5 1 satellites are larger in the “half magic” (u 5 65.9°) frame due t
incomplete removal of the dipolar interaction. The solid reference lines s
indicate the expected values of the following resonances (left to right)1
D/gp; ve 2 D/gp; ve; ve 1 D/gp; 2ve 2 D/gp; 2ve; 2ve 1 D/gp. (Line heights

re drawn to indicate spectral groupings (in order of decreasing h
orresponding toH 1 and 2H 1, and theDM 5 0, 1, and 2 tunnelling transitio

satellites.)
to
y

a-
-
of

he
s
-
e

e
e

lines centered around 2H 1 (10, 11). These lines can be seen
the experimental results, Figs. 2 and 3.

CONCLUSIONS

In summary, we have presented a set of calculations fo
time evolution of the proton Zeeman magnetization of
isolated tunneling methyl group in a tilted rotating frame
have found the resulting calculated spectra to be in
agreement with experimental results for CH3CD2I and meth-
ylmalonic acid. We have found, moreover, that spectral r
lution and signal-to-noise are both considerably improve
the orientation angle approachesu 5 uM 5 cos21(1/=3),
demonstrating that Fourier transform spectroscopy of the
netization evolution in a tilted RF frame represents an exce
alternative to the analogous experiment performed at
resonance.

FIG. 3. The experimental spectrum of the proton magnetization evol
of methylmalonic acid at 30 K. (a) On-resonance rotating frame (u 5 90°), rea
component withv1/gp > 45 G. (b) Tilted rotating frame, withu 5 uM and
H e 5 ve/gp > 39.5 G. A comparison of this spectrum with that of Fig. 1 g

/gp 5 17 6 0.5 G. Note the “nonmagnetic” peak at 01 D/gp ' 17.5 G. The
solid reference lines shown in (a) indicate the expected values of the foll
resonances (left to right): 01 D/gp; v1 2 D/gp; v1; v1 1 D/gp; 2v1 2 D/gp;
2v1; 2v1 1 D/gp. The meaning of the reference lines in (b) and their heig
both (a) and (b) are the same as that of Fig. 2.
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