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The time evolution of the proton Zeeman magnetization in the  group, corresponding t8= 0, 1, and—1, respectively. For a
rotating frame at the magic angle ©,, = cos*(1/\/3) is calculated  gjvenn the rotational energy levels form a degenerate doubl
for an isolated tunneling methyl group and its Fourier transform 4 g symmetry and a singlet oA symmetry. The energy
is given. The calculation compares well with the experimental difference between the ground statedafymmetry and the first
spectra of CH;CD,l and methylmalonic acid. It is shown that excited doubly degenerate state Bfsymmetry (which van-
Fourier transform spectroscopy of the magnetization evolution in ishes in the limitV, — o) is called the tunneling splitting of

a tilted RF frame represents an excellent alternative to the anal- h d ifold. d db H
ogous experiment performed at exact resonance, resulting in im- e ground state manifold, denoted . Thus,

proved resolution and a much better signal-to-noise ratio. © 2000
Academic Press ﬁwT = EE)ER) — EBS)

(W [Hel ™) — (" Hel YY)
INTRODUCTION — _3<H(O)(,y)|HR|H(O)(,y _ 277/3» [3]

The rotational motion of symmetric atomic groups such as ) ] _
CH, or NH, is usually hindered in molecular crystals. At low!© Obtain this result the small overlap between harmoni
temperatures and in the presence of strong hindering potentig@&€illator functions centered at neighboring minima of th
the rotational wave functions may be adequately represented®§tential has been neglected; in other words the eigenfunctio
linear superpositions of harmonic oscillator states centeredl4k aré considered normalized in this approximation. Cons
the minima of the hindering potential. For methyl groups ifuently, using Eq. [1] and the expression for the ground sta

. ) ) . L2 : : A © Van i
particular, the eigenfunctions of the rotational Hamiltorfigny ~harmonic oscillator functiortH™(y) (as given in most text
books on quantum mechanics), it follows that

fi? d?

- — 2
HR 21 d,yZ * VS(’Y), [1] wT = g wce_(ﬂzlg)“wdh)(Ihu)C) (7; - g) ’

[4]

are constructed in such a manner as to represent the irreducible

representations of the symmetry group of the hindering potedbere,w, = (9V,/21)** is the classical librational frequency
tial V4(y). (I is the moment of inertia of the methyl grouparound the minima of the hindering potential. A more accurat
while v is the angle describing its rotation about its symmet§xpression foror based on WKB pocket states (instead of

axis.) If the potential has a threefold symmetly,(y) = harmonic oscillator sta}teS_) is given. in Re?),(while it_s tem-
(})Vo(1 — cos 3y), the symmetry group is £(1), and the perature dependence is discussed in R®f.The magnitude of
eigenfunctionsy{’(y) of H are given as the tunneling frequency is of interest because it relates to tl

strength and symmetry of the hindering potential which, i
1 turn, reflects interactions between neighboring atomic grouj
P(y) =5 2 eHV(y —j2m/3), j=0,%1. [2] (4.

V3 i In what follows we will describe a spectroscopic method t
measure the tunneling frequency by monitoring the evolutio
The H™(y — j2=/3) are harmonic oscillator functions cen of the magnetization in a tilted rotating frame of nuclear spins
tered at the minima of;(y); n =0, 1, 2, .. ., is the torsional With this aim, let us consider an ensemble of isolated meth
or librational quantum numbee, = €?™° with v € A, E,, E, groups embedded in a crystal lattice, subject to an external L

denoting the irreducible representations of thesgmmetry magnetic fieldH, along they-axis of the laboratory fixed
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2 DAMYANOVICH, PETERNELJ, AND PINTAR

coordinate frame. We propose an investigation of the tinspin system during theé® pulse could be significant and should
evolution of the proton magnetization under the influence be taken into account. No such evolution was considered
RF pulses (of short duration compared to the spin—lattickeriving [6], therefore this condition must be modified in the
relaxation time) while the spins are in thermal equilibrium witlpresent calculation.

the lattice. The RF pulse sequence for the measurement of th&he expression for the proton magnetizatidi(t) along the
Zeeman magnetization in the rotating frame at exact resonancexis of the laboratory frame always refers to the end of th
M, (1), is as follows: The firstr/2 pulse rotates the equilibriumfield pulse. In actual experiments, however, the monitored tirr
magnetizatiorM, through 90° into the plane perpendicular tavindow, or “point” on the FID, is delayed by an additional
H,, where its phase defines the orientation of the transvetsee 7 after the end of the field pulse. Thus, in order tc
axes in the frame of reference rotating about the direction ebnsistently compare experimental results with calculate
H,. (By convention ther/2-pulse RF field is directed along theones, the evolution of the Zeeman-rotational system in the tin
y-axis). The subsequent RF field pulse of duratidgs phase- interval —during which the spins evolve in the laboratory
shifted by 90° with respect to the first pulse and therefofeame—should also be considered.

oriented along the-axis of the rotating frame. The experimental data on GED,I and methylmalonic acid

Except for the fact that in a tilted rotating frame the freeorroborate the theoretical results conclusively.
quency of the RF field pulse differs from the proton Zeeman
frequency w,, the situation is analogous to standard spin-
locking. Also, instead of a 90° pulse,6a pulse with a tipping
angled = tan ‘(w./(w, — w)) must be used. The frequency of
the 6° pulse is equal tav, with w, = y,H; whereH; is the
magnitude of the field pulse.

When the system under consideration is described by
density matrix instead of a wavefunction, then the expect::1ti5r|’1e_thyI N )
value of any operator is calculated as the trace of a product@fiCe relaxation time) is
the operator and the density matrix defined with respect to a

THE HAMILTONIAN OF THE SYSTEM AND THE
EQUATION OF MOTION FOR THE DENSITY MATRIX
IN THE TILTED ROTATING FRAME

aThe Hamiltonian describing the dynamics of an isolate
group (on a time scale short compared to the spir

chosen coordinate system. The density matriXor spins H=H,+ Hg+ Hp + Heet), [7]
evolving in a tilted rotating frame is given by the equation of
motion

where the Zeeman Hamiltonian is

ih %= [H, o], [5] Hz = ~fiwl . (8]

|, is the z-component of the total spin of the methyl group
whereH is the corresponding Hamiltonian (see below). Equarotons, andv, = y,H, is their Larmor frequencyHy, is the
tion [5] is further bounded by the initial conditian(t = 0) = rotational Hamiltonian [1]. In what follows, we shall assume
0(0), where the time = O refers to the instant when the RRhat the strength of the threefold hindering potentia{y) is
field pulse is switched on. It has been common practice $officiently large to limit the tunneling frequenay; of the
assume the existence of spin temperature in the rotating framethyl group to the range of the dipolar frequeney =
in which caseo(0) can be written as yihIRS. Assuming the proton magnetogyric factor ys =
2.675 X% 10" s* G™! and the proton—proton distand®, ~
1.78 A, weobtainw, ~ 134 kHz orwp/y, = 5 G.
0(0) o @ Pz BubrtHEl0) [6] The dipole—dipole interaction, written in a form similar to
(5), is

whereB = 1/kT, and the spin or Zeeman temperattligan the
rotating frame equals the lattice temperature tifde&H . k is
the Boltzmann constant, whild’(6) is the secular part of the Ho=fiop 2 (=1)* X Uj*Vi. 9]
dipolar interaction in the rotating frame (see below). In the k=-2 i<i

present calculation we will not use the initial condition [6], but

shall only assume that prior to the application of tiepulse, The operatorsJ; * are

the Zeeman-rotational system is in thermal equilibrium with

the lattice. Since in many experiments the magnitddef the

6° pulse is comparable td,, it is clear that the evolution of the U= (6m/5)Y2Y5 (05, o). [10]

2



TUNNELING SPECTROSCOPY IN A TILTED ROTATING FRAME 3

where the spherical harmoni¥s“(0;, ¢;) (pplar angles ;. The coefficientd,(6) are 6),
¢;;) associated with the proton—proton vecRy), are defined
in (5). The spin operator¥’ are doo(8) = (3 cos'o — 1)/2, [202]
do-1(0) = *£(3/2)Y2sin 6 cos o, [20Db]
1
Vi = —(8/13) Y 1717 - 2 (1) |, [11a] do-»(0) = (3/8)Y%sin?6. [20c]
Vil = (1951 4 | £10) [11b] The effective Zeeman frequency in the tilted rotating frame
ij —\lilj i j/

introduced in [17], is
Vt2 — _I Iill jily [11C]

: we=[(wo — ©)* + ]2 [21]
and we ha_tve mtroduce_b” =l andlfl =l = I‘V'_ . Time Evolution of the Zeeman Polarization in the Tilted
The radlofrequerjcy_ field applied to the ;am_ple is a rotating Rotating Frame
transverse magnetic field. The corresponding interaction Ham-
iltonian is Equation [16] is formally the same as discussed previous
in (7) and consequently the same method of solution applie
Hge(t) = —fiw,(1,c08 0t — 1,sin wt), [12] Using the interaction representation defined by
wherew; = y,H; andl, = 1,4 + |, + 1,5 (similarly for I,). on(t) = el (t)e M, [22]
The equation of motion for the density matrix in the rotatingne can easily write down the solution for the interactior
frame (assuming the frequency of the RF field> w.) is (6), picture density matrixr,(t) in a form of perturbation series. Up
to the second order in the nonsecular part of the dipols

i % (g — o), iy, interactionV, the result is
+ hwp E USVE + Hg, pd. [13] o(t) = 0,(0) + (—%) ft dt,[V(t,), o,(0)]
i<j 0
. . - 2 [ t
;t fn:?;?;et?atr?sfcgtra n?aet?osr:ty matrix in the laboratory frame by . ( - f;) J 0 dt, J 0 ALVt
p = el“tlp e ot [14] [V(ty), oy(0)]] + - - -, [23]
The 6° tilted rotating frame is introduced through the transv—vhere
formation @) V(t) = el Hoty/ g (i Hot [24]
o=e'%pe [15] and, of courseg,(0) = o(0).

The initial density matrix(0) describes the state of the systernr
Whereupon the resumng equation of motion toebecomes in the tilted rotating frame immediately after tﬂ?epulse has been
switched off. As already suggested in the Introduction (and pr
Fy viously discussed in7j), the evolution of the spin system during
i% i [Ho +V, o], [16] the6° pulse should be considered whenever the magnitude of tt
pulse,H;, is comparable to the magnituél of the spin-locking
field pulse. This modifies the expression for the initial densit
matrix o(0) with respect to its usual high-temperature form, [6]
B 00 Using the high-temperature approximation (with tbfe pulse
Ho = —fiwd, + He + Ho(6), [17] along the negativg-axis) and keeping only terms to first order in

H%(0) = dog(0)Frop D, uove, [18] the dipolar interactions, we obtain

where

i<j

iBhwo 1 (¢
and o(0) = ao(0) + Puios f dg’e-in=o-6"
0

Z fho)

v=2%wﬁ%2uwng%ww.m] X3 Kelo(0)Vie 0 4 [25]

k#0 i<j k+#0 k
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whereay(0) = (1 + BLhwel, + -+ )/Z is the high-temper-
ature approximation of [6]Z is the partition sumhg =
He/hw', and vy = y,H}. The second term of [25] thus
represents the change in the initial condition for the density
matrix, which is due to spin dephasing during #fepulse.

In accordance with what has been said in the Introduction,
the Zeeman polarization along theaxis of the laboratory
frame (thex-component of the magnetization) is

My(t) = yATr(p(t)1y). (26]

Using [14] and the inverses of [15] and [22], we can rewrite
[26] as

M,(t) = sin 6 - yATr{o (1)l }cos wt
+ cos 0 - yiTr{o|(t)e ™ Ht| e~ (M Hlcos wt

+ v iTr{o (1) e/ Het g~ (M Htgin t. [27]

The calculation of the traces in2{) is performed
in the basis defined by the eigenstatesHyf (17), which
in turn are expressed in terms of the symmetry adapted
eigenstates of-Aw.l, + Hg (given explicitly in (7) to-
gether with the diagonalization ofl;). The calculation
is particularly simple—although lengthy—in the magic-
angle tilted rotating frame corresponding to= 60y =

AND PINTAR

X [(=1)"sin(Nw, + AA)t — sin wt]sin ot

+ 3 a&S)(B)[ (?""wm

A==*1

)sin wd

—sin(we + AA)t + 2 SiN2w, + )\A)t]

Xsinwt+ > > AG(B)[cognw, + AA)t

n=12r==1

— coswd]coswt + > > BEG(B)

n=12 x==*1
X [(—=1)"sin(nw, + AA)t — sin wt]cos wt
+ > > DEUB)[1 - cognw,+ AA)t]coswt

n=12 r==*1

+ > > FO(B)sin(nw, + AA)t coswt

n=12 rx==*1

2 a&°>(3)[);A—

A==*1

(3009 + )\A)

We

X coswt — cojw, + AA)t

— 2cof2w, + )\A)t] Ccos wt. [28]

cos Y(1/V3) = 0.37. In this caseHY(0,) = 0 (since
= 0), yielding

1
M,(t) = (|/6/3) Mocos wt — 4( ) (1 -3 cosp)?

X{ Slnwt—< )COSwt

2 sm2wt+< )cos?wt}sinwt

\//3 2
+ 716 ( ) (1 -3 cosp)

{ 3.2 2

we\ | 11
+ | — /SN wt +
w1

X

\
> 3 Cosod

( )0977\5 11
+
(1)1 4 6
11,2
COS 2wt

6
X cosot+ > > AS(B)cognw,+ AA)t

n=12A==*x1

—coswdlsinot + > > BE(B)

n=12A=*1

X sin 2wt +

My = v, ATr{o,(0)I;}; the symbolzA is the A-E tunneling
splitting; w. = w,V(); B denotes the angle between the
external magnetic fieltl, and the symmetry axis of the methyl
group; and the coefficientd to F and a are given in the
Appendix. Due to the vanishing of the secular part of the
dipolar interactiorH Y’ [18, 20a] in the magic-angle frame, the
frequencies corresponding to the transitions among the eige
states ofH, induced by the nonsecular terms [19H(], V] #

0) are not shifted by the dipolar interaction (as can be se
from [28]). The intensities of these transitions, on the othe
hand, do depend on the strength of the nonsecular part of t
dipolar interaction in the tilted rotating frame [19, 20b, 20c] a
shown in the Appendix.

DISCUSSION OF THE RESULTS

To represent the results in a graphical form, it is conveniel
to define the Fourier transform & ,(t) as

\

m,(&, cosp) = % fw dtM,(t)e', [29]
[ Z7T

and the corresponding expression for a polycrystalline sar
ple is



TUNNELING SPECTROSCOPY IN A TILTED ROTATING FRAME 5

tiples of 2H, (apart, of course, from the tunneling side
bands). However, when the evolution of the Zeeman-rote
tional system during the 90 @ pulse is allowed for, then
the Fourier transform acquires intensity at multiplestof
as well, with intensity proportional t@,|H,|-Zw/fiw].
This structure disappears in the linkit; — « and is in fact
barely visible wherH’, is =60 G.
The situation is somewhat different when the experiment
A are performed off-resonance at the magic arfgle= cos *(1/

*10 7!
.18

.08

D S ' — ~ V/3). In this case, as was already pointed algt(6,,) = 0, and
& " \ /\ consequentlyH X(0,) = 0; however,dy(6y) # O fork # 0,
S¥IS ) /} ‘ MJ?/\ M ' and the real part of the Fourier transform of theomponent
5 - 7, - /% — of the magnetization as given by [28] will have nonvanishin
00 20.00 40.00 60.00 80.00 10000 120.00 intensity both aH; and H,, even in the limit of a very strong

h(Gauss) 6y pulse. The imaginary component of the Fourier transforn

FIG. 1. The absolute value of the real part of the Fourier transform of tHdU€ to the evolution of the Zeeman-rotational system durin
expression [28] corresponding to the magic-angle case. Here 40 G; the the 6, pulse, vanishes in this limit.
strength of thef-pulseH’;, = 50 G; woly, = 5 G, and the tunneling splitting |t holds true that the real component of the Fourier transfort
Aly,is 0, 5, 15, and 30 G; the broadening parametés 1 G. The curves are 465 ot depend significantly on the strength oféaeulse for
plotted as functions of)/y, (the imaginary part of the Fourier transform is . : 3
qualitatively similar). the A-values used. Simulations fét, = V()H, = 40 G,

H) =50G,0=1G, andA/y, =0, 5, 15, and 30 G are shown

in Fig. 1. The curves are plotted as a function of the off-fielc
parameteh = Q/vy,, with intensity given in arbitrary units.
Only the real part of the Fourier transform is shown since th
imaginary component is, at least for the parameters chose

1 1
(my(@)) = 2[ d cosgm (@, cosp). [30]
-t quantitatively the same.

Using [28], [29], and [30] and the results given in the Appen-
dix, it is not difficult to obtain the explicit results fgm,(()) COMPARISON WITH EXPERIMENTS
(2 = @ — w). Broadening the result with a Gaussian function

according to As has already been pointed out, at exact resonafice (

7/2), the real component of the Fourier transfoim, (Q2; o))

» C@-wd2ey F—3 shows a nonvanishing intensity only in the neighborhood
(m(Q; o)) = du(my(u))e I\2ma®, [31] 2H,. Specifically, atA = O there is a single peak centered af
- 2H, of width of 3.8 G at half intensity. As the tunneling

splitting #A increases, a double peak structure appears

we obtain the spectra shown in Fig. 1, representing the absoltgtatively small values of. The peak-to-peak separation of the
value of the real part of the Fourier transform of [28]. (Theesulting tunneling satellite is further shifted by the dipola
imaginary component is not shown since in the magic-angdlgteraction away from the expected value of,2with the
case it is qualitatively the same as the real part of the Fourigagnitude of the shift dependent on the ratig/A.
transform.) At magic angleH’(6) = 0 and consequently the tunneling

Itis well known @) that the Fourier transform of the Zeemarsatellites are not shifted by the dipolar interaction. It turns ot
polarization in the rotating frame at exact resonance showit the agreement between the calculated and measured sy
nonvanishing intensity only in the vicinity ofF2, (we are tra is much better a# = 6,, than at exact resonance. We car
interested only in the Fourier components peaketiaind see that the spectrum of GED,I, Fig. 2a(9), taken at 40 K
2H, and neglect the Fourier component @t = 0, which, and# = 6,,, compares well with the calculated resultsfgt
although always present, is distorted due to experimental litd{ = 25 G,H, = 20 G, andA/y, = 4.4 G. The same is true
itations). This is due to the fact that at exact resonahce in the case of methylmalonic acid, Fig. 3, witity, = 17.6 G.
7/ 2, do-1(7/2) = 0, andV, as defined by [19], contains only A comparison of the on-resonance spectrum with its magi
the V=2 terms of the dipolar interaction. This result, togethesingle counterpart (Figs. 3a and 3b, respectively) illustrates t
with the assumption tha#(0) in the rotating frame has theimproved spectral resolution obtainable with tilted rotating
canonical forma(0) « e Pz AH+HE=2) ig syfficient to frame spectroscopy.
show that the Fourier transform of the magnetization in the To conclude we would like to emphasize that the magnet
rotating frame has a nonvanishing intensity only near mutation as given by [27] or [28] is evaluated immediately afte
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FREQUENCY (kHz) lines centered around (10, 11). These lines can be seen in

0 50 100 150 200 250 300 350 400 the experimental results, Figs. 2 and 3.
A A A R A AL LA AL AN A

a

CONCLUSIONS

In summary, we have presented a set of calculations for tt
| _ time evolution of the proton Zeeman magnetization of al
» - isolated tunneling methyl group in a tilted rotating frame an
- - have found the resulting calculated spectra to be in goc
L . agreement with experimental results for {HD,l and meth

wedl bt rodlebebef oLl Mrretrrrrbesbeseetrrrbrrrsderrrm i id. (
50 100 ylmalonlc aqd We haye found, moreover, that spectral res
H1 (GAUSS) lution and signal-to-noise are both considerably improved ¢
FREQUENCY (kHz) the orientation angle approachés= 6, = cos ‘(1/V/3),
0 50 100 150 200 250 300 350 400 demonstrating that Fourier transform spectroscopy of the ma
AL I A N Ll B A netization evolution in a tilted RF frame represents an excelle
- b | alternative to the analogous experiment performed at exe
B i resonance.
- FREQUENCY (kHz)
o . 0 250 500
M AAMAR BRI ™ T ll T I I B
\A ] i 0 -‘
RA TR 1, el A TR Boululudunlanluduglidy N 7
O 10 20 30 40 50 80 70 80 S0 100 - ]

H1 (GAUSS) I N

FIG. 2. The experimental spectrum of the proton magnetization evolution
of CH;CD,l in the tilted rotating frame, at 40 K. (&, = 20 G andd = 65.9°;
(b) H. = 20 G andf = 6,,. Comparing this spectrum with that of Fig. 1 gives

Aly, = 4.5+ 0.3 G. Note the “nonmagnetic” peak ati0A/y, ~ 4.5 G. The ;/\A —
AM = 1 satellites are larger in the “half magict & 65.9°) frame due to

incomplete removal of the dipolar interaction. The solid reference lines shown L ——— 510 Loth [ '1[ ) SURS U W
indicate the expected values of the following resonances (left to right): 0 0 H1 (GAUSS) o0 10

Alyp; we — Alyp; we; we + Alyy; 2we — Alyy, 2we; 2w, + Aly,. (Line heights

are drawn to indicate spectral groupings (in order of decreasing height) FREQUENCY (KkHz)
corresponding téd, and H,, and theAM = 0, 1, and 2 tunnelling transition O,,,ISIOI,IECI)?H’,?O |2|O|9,,2,5l?,,7’,?c,),|3,’?9,?,?91
satellites.) -

b

the end of the field pulsd ,. However, the measurement of the — —
FID is always delayed for a time (=10 us) after the end of -
the field pulse. For this reason we should also have taken into = ~
account the evolution of the magnetization in the laboratory -

frame under the action of fwol, + Hg + HY’ (using the — —
secular part of the dipolar interaction as defined in the labora- n \m"rj L‘Hf ]
tory frame). A calculation entirely analogous to the one de- 090 20 30 4olflo 60 70 “8'6 ‘90" 100
scribed above shows that the real and imaginary components of HI (GAUSS)

the Fou”,er tranSform OﬂX(t * T)> become m|xtgres of the FIG. 3. The experimental spectrum of the proton magnetization evolutiol

real and imaginary parts as defined on the basis of [27]. Th&nethyimalonic acid at 30 K. (a) On-resonance rotating fraéie 90°), real

corresponding weight factors are rapidly oscillating function®mponent withw,/y, = 45 G. (b) Tilted rotating frame, witl# = 6,, and

of the time delayr. Consequently, when comparing the calcuHe = .y, = 39.5 G. A comparison of this spectrum with that of Fig. 1 gives

lated spectra [28] with experimental results, this fact should B&» = 17 0.5 G. Note the “nonmagnetic” peak atiOA/y, ~ 17.5 G. The

kept in mind. Moreover the-evolution causes the a earancsolld reference Ilnes_shown in (a) indicate the expected values of the followir
p . . pF’ ?esonances (left to right): & Alvy,, w1 — Alyy, w1; w1 + Alyy; 20, — Al

of a line centered at the off-field value corresponding to thg, : 2., + Alv,. The meaning of the reference lines in (b) and their height ir

tunneling frequency, with intensity comparable to that of thisth (a) and (b) are the same as that of Fig. 2.
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